home *** CD-ROM | disk | FTP | other *** search
/ IRIX 6.2 Development Libraries / SGI IRIX 6.2 Development Libraries.iso / dist / complib.idb / usr / share / catman / p_man / cat3 / complib / dgerq2.z / dgerq2
Text File  |  1996-03-14  |  3KB  |  133 lines

  1.  
  2.  
  3.  
  4. DDDDGGGGEEEERRRRQQQQ2222((((3333FFFF))))                                                          DDDDGGGGEEEERRRRQQQQ2222((((3333FFFF))))
  5.  
  6.  
  7.  
  8. NNNNAAAAMMMMEEEE
  9.      DGERQ2 - compute an RQ factorization of a real m by n matrix A
  10.  
  11. SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
  12.      SUBROUTINE DGERQ2( M, N, A, LDA, TAU, WORK, INFO )
  13.  
  14.          INTEGER        INFO, LDA, M, N
  15.  
  16.          DOUBLE         PRECISION A( LDA, * ), TAU( * ), WORK( * )
  17.  
  18. PPPPUUUURRRRPPPPOOOOSSSSEEEE
  19.      DGERQ2 computes an RQ factorization of a real m by n matrix A:  A = R *
  20.      Q.
  21.  
  22.  
  23. AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
  24.      M       (input) INTEGER
  25.              The number of rows of the matrix A.  M >= 0.
  26.  
  27.      N       (input) INTEGER
  28.              The number of columns of the matrix A.  N >= 0.
  29.  
  30.      A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
  31.              On entry, the m by n matrix A.  On exit, if m <= n, the upper
  32.              triangle of the subarray A(1:m,n-m+1:n) contains the m by m upper
  33.              triangular matrix R; if m >= n, the elements on and above the
  34.              (m-n)-th subdiagonal contain the m by n upper trapezoidal matrix
  35.              R; the remaining elements, with the array TAU, represent the
  36.              orthogonal matrix Q as a product of elementary reflectors (see
  37.              Further Details).
  38.  
  39.      LDA     (input) INTEGER
  40.              The leading dimension of the array A.  LDA >= max(1,M).
  41.  
  42.      TAU     (output) DOUBLE PRECISION array, dimension (min(M,N))
  43.              The scalar factors of the elementary reflectors (see Further
  44.              Details).
  45.  
  46.      WORK    (workspace) DOUBLE PRECISION array, dimension (M)
  47.  
  48.      INFO    (output) INTEGER
  49.              = 0: successful exit
  50.              < 0: if INFO = -i, the i-th argument had an illegal value
  51.  
  52. FFFFUUUURRRRTTTTHHHHEEEERRRR DDDDEEEETTTTAAAAIIIILLLLSSSS
  53.      The matrix Q is represented as a product of elementary reflectors
  54.  
  55.         Q = H(1) H(2) . . . H(k), where k = min(m,n).
  56.  
  57.      Each H(i) has the form
  58.  
  59.         H(i) = I - tau * v * v'
  60.  
  61.  
  62.  
  63.                                                                         PPPPaaaaggggeeee 1111
  64.  
  65.  
  66.  
  67.  
  68.  
  69.  
  70. DDDDGGGGEEEERRRRQQQQ2222((((3333FFFF))))                                                          DDDDGGGGEEEERRRRQQQQ2222((((3333FFFF))))
  71.  
  72.  
  73.  
  74.      where tau is a real scalar, and v is a real vector with
  75.      v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in
  76.      A(m-k+i,1:n-k+i-1), and tau in TAU(i).
  77.  
  78.  
  79.  
  80.  
  81.  
  82.  
  83.  
  84.  
  85.  
  86.  
  87.  
  88.  
  89.  
  90.  
  91.  
  92.  
  93.  
  94.  
  95.  
  96.  
  97.  
  98.  
  99.  
  100.  
  101.  
  102.  
  103.  
  104.  
  105.  
  106.  
  107.  
  108.  
  109.  
  110.  
  111.  
  112.  
  113.  
  114.  
  115.  
  116.  
  117.  
  118.  
  119.  
  120.  
  121.  
  122.  
  123.  
  124.  
  125.  
  126.  
  127.  
  128.  
  129.                                                                         PPPPaaaaggggeeee 2222
  130.  
  131.  
  132.  
  133.